Solar heat gain coefficient
Understanding the solar transmittance through translucent and transparent materials such as glass is important for determining the solar heat gain into the space they enclose during sunny conditions. Solar heat gain can be beneficial in the winter, as it reduces the need for heating, but in the summer can cause overheating.
The total solar heat transmittance through transparent and translucent materials is equal to the solar heat that is transmitted through the material directly, plus the solar heat that is absorbed by the material and then re-emitted into the enclosed space. Until recently this was expressed in terms of a shading coefficient which described the amount of solar heat transmitted through a material compared to the amount of solar heat transmitted through a standard sheet of clear float glass 3mm thick.
However, manufacturers are now moving away from shading coefficients. In the USA, they are moving towards the use of solar heat gain coefficients (SHGC) and in Europe, window solar factors or g-values. In essence, these both represent the fraction of incident solar radiation transmitted by a window, expressed as a number between 1 and 0, where 1 indicates the maximum possible solar heat gain, and zero, no solar heat gain. The difference between US and European systems is that they use a different value for air mass.
Actual solar heat gain is dependent on the angle of incidence of solar radiation on the glazing (and so the proportion of diffuse and direct beam solar radiation) as well as the spectral make up of the solar radiation. However, as a simplified method, manufacturers will often only provide a spectrally-averaged solar heat gain coefficient for normally-incident solar radiation. Values for other angles of incidence and for diffuse solar radiation can then be estimated using standard equations or tables for similar windows.
Solar heat gain coefficients, as with g-values can refer to the centre-of-glass SHGC or can relate to the entire window, including frame.
[edit] Related articles in Designing Buildings Wiki
- BREEAM.
- Code for Sustainable Homes.
- Computational fluid dynamics (CFD).
- Emission rates.
- Emissivity.
- Energy certificates.
- Environmental legislation.
- g-value.
- Green deal.
- Leadership in Energy and Environmental Design.
- Low-e glass.
- Shading coefficient.
- Solar reflectance index.
- Sustainability.
- Thermal bridge.
- U value.
- Zero carbon homes.
- Zero carbon non-domestic buildings.
Featured articles and news
Amendment to the GB Energy Bill welcomed by ECA
Move prevents nationally-owned energy company from investing in solar panels produced by modern slavery.
Gregor Harvie argues that AI is state-sanctioned theft of IP.
Heat pumps, vehicle chargers and heating appliances must be sold with smart functionality.
Experimental AI housing target help for councils
Experimental AI could help councils meet housing targets by digitising records.
New-style degrees set for reformed ARB accreditation
Following the ARB Tomorrow's Architects competency outcomes for Architects.
BSRIA Occupant Wellbeing survey BOW
Occupant satisfaction and wellbeing tool inc. physical environment, indoor facilities, functionality and accessibility.
Preserving, waterproofing and decorating buildings.
Many resources for visitors aswell as new features for members.
Using technology to empower communities
The Community data platform; capturing the DNA of a place and fostering participation, for better design.
Heat pump and wind turbine sound calculations for PDRs
MCS publish updated sound calculation standards for permitted development installations.
Homes England creates largest housing-led site in the North
Successful, 34 hectare land acquisition with the residential allocation now completed.
Scottish apprenticeship training proposals
General support although better accountability and transparency is sought.
The history of building regulations
A story of belated action in response to crisis.
Moisture, fire safety and emerging trends in living walls
How wet is your wall?
Current policy explained and newly published consultation by the UK and Welsh Governments.
British architecture 1919–39. Book review.
Conservation of listed prefabs in Moseley.
Energy industry calls for urgent reform.
Comments
The definition of SHGC on this page is incomplete as it does not indicate whether the input gain is global (direct + indirect) or just direct, and it does not give the sun angle.
CORRECTION - Actual solar heat gain is dependent on the angle of incidence of solar radiation on the glazing (and so the proportion of diffuse and direct beam solar radiation) as well as the spectral make up of the solar radiation. However, as a simplified method, manufacturers will often only provide a spectrally-averaged solar heat gain coefficient for normally-incident solar radiation. Values for other angles of incidence and for diffuse solar radiation can then be estimated using standard equations or tables for similar windows.
NB This is a wiki site, so if you think an article can be improved, just click 'Edit this article' and improve it.